

Computer Science - Courses in English* -

- Databases
- Operating Systems
- Seminar (Bachelor)
- Software Construction 2
- Elective Modules and Projects (options will be announced closer to the semester start)

Collaboration of the Department of Computer Science & Department of Information & Electrical Engineering (Sept. 2019)

^{*} courses are offered in the summer semester (March - July) only

Course Name: Databases			
Degree programme: Information Engineering (Bachelor)		Responsible Lecturer: Pro	f. Dr. Wilfried Wöhlke

Work load: 180 hours **Lecture hours per week:** 3 + 1 hrs lab/week **ECTS Credits**: 6

Course objectives:

The students

- have the ability to design a relational database system,
- have the knowledge of Entity Relationship Modeling, Normalization, Structured Query Language.

Contents:

- History
- Database Management Systems
- Entity Relationship Model
- Algebra of Relations
- Normalization
- Structured Query Language

About didactics and work load distribution:

Lecture: Tuition in seminars, blackboard, slides, computer simulation

Laboratory: Laboratory- and computer practical course

attendance: 72h, individual study: 108h

_			4.5
Requireme	ante tor	narticir	nation:
Neudil Cili	ciito ioi	Dai uci	Jauvii.

Good knowledge of software construction (This is a 4th semester class)

Course language:

English

Type of exam:

Lecture: Successful passing of written exam

Laboratory: Successful participation of the lab-courses with written reports and short final exam

Code for class schedule:

DB / DBL

Requirements for credit point allocation:

- Active participation in lectures and lab
- Passing lab requirements & written exam

- Kähler, W.-M. (2008): SQL mit ORACLE, Vieweg Verlag
- Heuer, A. (2000): Datenbanken Konzepte und Sprachen, mitp Verlag

Course Name: Operating Systems			
Degree programme: Information Engineering (Bachelor)		Responsible Lecturer: Prof. DrIng. Holger Gräßner	
Work load: 180 hours	Lecture hours per we	eek: 3 + 1 hrs lab/week	ECTS Credits: 6

Course objectives:

The students have

- · an overview about existing operating systems and their individual characteristics,
- the ability to use different OS resources in order to program dedicated application tasks,
- the ability to design and realize complex systems using the available OS resources.

Contents:

- Multitasking methods
- Communication and synchronization
- Resource sharing and timing control
- Interaction with external signals
- I/O programming, OS driver basics
- OS comparison and selection
- Selected topics in modern OS
- Exemplary applications during the lab with in-depth system-analysis and realisation

About didactics and work load distribution:

- Lecture: Q&A, repetition, exercises, in-depth topics
- Lab exercises deepen the lecture content; working in teams of 2 students; exercises prepared before and presented during lab hours

attendance: 72h, individual study: 108h

Requirements for participation: Basic knowledge of software construction, computer architecture (This is a 6 th semester class)	Course language: English
Type of exam: Lecture: Successful passing in written exam Laboratory: Successful participation in lab-courses with lab preparations with reviews, functional programmes, lab reports	Code for class schedule: OS / OSL

Requirements for credit point allocation:

- Active participation in lectures and lab
- Passing lab requirements
- Passing written exam OR practical project

- Tanenbaum, A.S. (2009): Modern Operating Systems, Prentice Hall
- Kernighan, B.W.; Ritchie, D. M. (2000): The C-Programming Language (ANSI C), Markt+Technik Verlag
- Kerrisk, M. (2010): The Linux Programming Interface, No Starch Press
- Corbet, J. et al. (2005): Linux Device Drivers, O'Reilly

Course Name: Seminar (Bachelor)			
Degree programme: Computer Science (Bachelor)		Responsible Lecturer: Prof.	Dr. Zhen Ru Dai
Work load: 90 hours	Lecture hours per we	eek: 2	ECTS Credits: 3

Course objectives:

On completion of the seminar the student will have

- familiarization with a new computer science topic
- become acquainted with a given technical and scientific topic
- prepared presentation slides for the topic
- given an understandable presentation to an audience that is not familiar with the special computer science topic
- learned techniques about presentation, discussion and evaluation
- learned to work with presentation tools e.g. Powerpoint

Contents:

This module is an excellent starting point for student research either individually or as part of a research team. Students will learn how to dive deeply into a scientific topic, present the key ideas in front of a peer group, and react to feedback.

- Presentation techniques
- Investigate a technical topic
- Tool handling
- Discussion and evaluation
- Provide feedback to presenter
- work out outline in languages English and/or German

About didactics and work load distribution:

- presentation of 30 minutes, discussion and feedback from the audience
- support in working out the presentation slides
- test presentation with supervisor
- write summary as outline

Requirements for participation:	Course language:
4 semesters of Computer Science and higher	German and English
Type of exam:	(presentations by students depending on nationality)
Delivery of presentation slides and abstracts	
	Code for class schedule:
	TIS / AIS

Requirements for credit point allocation:

compulsory attendance

- Martin Hartmann, Rüdiger Funk, Horst Nietmann: Präsentieren; Beltz
- Josef W. Seifert: Visualisieren, Präsentieren, Moderieren; Gabal
- Christian W. Dawson: Computerprojekte im Klartext; Pearson Studium
- Christian W. Dawson: Projects in Computing and Information Systems, Pearson

Course Name: Software Construction 2			
Degree programme: Information Engineering (Bachelor)		Responsible Lecturer: Prof. Dr. Marc Hensel	
Work load: 180 hours	Lecture hours per we	eek: 3 + 1 hrs lab/week	ECTS Credits: 6

Course objectives:

The students

- understand JAVA syntax and can write a JAVA program,
- can construct classes in object oriented form using the JAVA API,
- are able to design and test JAVA programs inside a development tool,
- are able to use encapsulation and inheritage structures,
- can use packages, streams, file handling, threads, swing and other parts of the basic JAVA API,
- can construct JAVA software including a graphical user interface for small applications.

Contents:

Lecture:

- Introduction into the object oriented programming in JAVA
- The Programming environment and the fundamental programming structures in JAVA
- The object oriented programming fundamentals
- The basic usage of classes, associations, inheritance, encapsulation and other object oriented subjects
- Main libraries of the API (Application Programming Interface)
- The execution of JAVA programs using graphical user interfaces and threads

Lab:

During the laboratories students learn how to the transfer the main parts of the object-oriented JAVA syntax into applications. The implementation of JAVA programs, the usage of JAVA classes and the usage of the JAVA software Developers Kit (SDK) is the main focus of this module.

About didactics and work load distribution:

- Lecture: Q&A, repetition, exercises, in-depth topics
- Lab exercises deepen the lecture content; working in teams of 2 students; exercises prepared before and presented during lab hours

attendance: 72h, individual study: 108h

Requirements for participation:	Course language:
Basic knowledge of software construction (This is a 2nd semester class)	English
Type of exam:	
Lecture: Successful passing in written exam	Code for class schedule:
Laboratory: Successful participation in the lab-courses with written reports and a final exam	SO2 / SOL2
Cam	

Requirements for credit point allocation:

- Active participation in lectures and lab
- Passing lab requirements
- Passing written exam OR practical project

- Haines, S.; Potts, S. (2002): Java 2 Primer Plus, SAMS Publishing
- Flanagan, D. (2005): JAVA in a Nutshell, A Desktop Quick Reference, O'Reilly
- Horstmann, C.S.; Cornell, G. (2003): Core Java 2, Volume I-Fundamentals, Sun Microsystems Press
- Esser, F. (2001): Java 2, Designmuster und Zertifizierungswissen, Galileo Press
- Eckel, B. (2006): Thinking in Java, Prentice Hall
- Arnold, K.; Gosling, J.; Holmes, D. (2001): The Java Programming Language Third Edition, Addison-Wesley